Rational Knots and a Theorem of Kanenobu
نویسنده
چکیده
We give examples where Kanenobu’s rationality criterium fails. AMS subject classification: 57M25 (primary).
منابع مشابه
Lefschetz Fibration Structures on Knot Surgery 4-manifolds
In this article we study Lefschetz fibration structures on knot surgery 4-manifolds obtained from an elliptic surface E(2) using Kanenobu knots K. As a result, we get an infinite family of simply connected mutually diffeomorphic 4-manifolds coming from a pair of inequivalent Kanenobu knots. We also obtain an infinite family of simply connected symplectic 4-manifolds, each of which admits more t...
متن کاملRational Choice Theory: A Cultural Reconsideration
Economists have heralded the formulation of the expected utility theorem as a universal method of choice under uncertainty. In their seminal paper, Stigler and Becker (Stigler & Becker, 1977) declared that “human behavior can be explained by a generalized calculus of utility-maximizing behavior” (p.76). The universality of the rational choice theory has been widely criticized by psychologists, ...
متن کاملOn the Reversibility of Twist-spun Knots
Litherland has shown that if a knot is (+)-amphicheiral then its m-twist-spin is reversible. We show that, for classical knots, in many cases the converse holds. The irreversibility (sometimes called noninvertibility) of certain twist-spun knots has been established by Ruberman [10], using the Farber-Levine linking pairing and the Casson-Gordon invariants. More recently, alternative proofs of t...
متن کاملar X iv : 0 90 1 . 03 80 v 2 [ m at h . SG ] 6 J ul 2 00 9 RATIONAL LINKING AND CONTACT GEOMETRY
In the note we study Legendrian and transverse knots in rationally null-homologous knot types. In particular we generalize the standard definitions of self-linking number, ThurstonBennequin invariant and rotation number. We then prove a version of Bennequin’s inequality for these knots and classify precisely when the Bennequin bound is sharp for fibered knot types. Finally we study rational unk...
متن کاملRational Linking and Contact Geometry
In the note we study Legendrian and transverse knots in rationally null-homologous knot types. In particular we generalize the standard definitions of self-linking number, Thurston-Bennequin invariant and rotation number. We then prove a version of Bennequin’s inequality for these knots and classify precisely when the Bennequin bound is sharp for fibered knot types. Finally we study rational un...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Experimental Mathematics
دوره 9 شماره
صفحات -
تاریخ انتشار 2000